Showing posts with label IR. Show all posts
Showing posts with label IR. Show all posts

Tuesday, November 4, 2014

IR Remote Control Tester

Here’s a simple, low cost, and easy to construct infrared remote control tester. The tester is built around an easily available infrared receiver module (TSOP 1238).

IR Remote Control Tester Circuit diagram:


IR

Normally, data output pin 3 of the IR receiver module is at a high level (5 volts)and as such driver transistor T1 is in cut-off state. Whenever the IR receiver module receives a valid (modulated) infrared signal, its data output pin goes low in synchronism with the received infrared bursts. As a result, transistor T1 conducts during negative pulse period and the.LED blinks to indicate reception of signals from the remote such as TV remote control. A miniature active buzzer is connected at the collector of transistor T1 for audio indication.


Proposed

The 5V DC for energizing the circuit is directly derived from the 230V AC mains supply. Unlike the conventional resistive voltage divider, a capacitive potential divider is used here, which does not radiate any heat and makes the tester quite compact. Another advantage of this tester is no false triggering due to the ambient light or electronic ballast-operated tubelights. A suggested enclosure for the circuit is shown in Fig. 2.



Read More..

Wednesday, September 17, 2014

IR Beam Breaker Schematics

This is an Infrared beam breaking alarm ideal to use in entry or passages.It is based on the working of the popular IR sensor Module TSOP 1738 which senses 38 kHz Infrared pulses from the IR LED of the transmitter. Range of the circuit is about 5 meters if the transmitter and receiver are properly aligned TSOP 1738 IR sensor module responds to only 38kHz pulsed infrared rays. Circuit diagram :   IR Beam Breaker Schematics Circuit Diagram It will not sense continuous IR ray from the IR LED.So a transmitter circuit(as one in TV remote handset) based on 555 IC is required. Any standard transmitter circuit based on 555 IC can be used. But its output should be 38kHz exactly.TSOP 1738 gives 5 volt output and 5mA current in the off position. That is when IR rays are not available.Its output is current sinking so that when it receives 38kHz IR rays, output becomes zero.Pin 2 of the module should get a supply voltage between 4.5 to 6 volts.Higher voltage above 6 volts will destroy the device. The module is generally immune to ambient light, but may responds to sources of noice such as electronic ballasts. Out put from the IR module is given to the inverting input of IC1. LM311 is a precision voltage comparator . It looks like the common Op Amps like LM741, CA3130,CA 3140,TL071 etc.But its pin connections and output are different from other Op Amps. Pin 2 Non inverting Pin3 Inverting Pin 1 Ground Pin8 Vcc Pin7 Current sinking Output

The non inverting input of IC1 is connected to a potential divider comprising R1 and R2. When the IR sensor gets IR pulses from the transmitter, output of IC1 remains high. When the IR beam breaks, output from the sensor becomes high which triggers IC1. It then sinks current to activate buzzer and LED.

Read More..