Showing posts with label Two. Show all posts
Showing posts with label Two. Show all posts
Wednesday, November 5, 2014
Two Button Digital Lock
This very simple circuit of two button digital lock. Now here’s a digital lock unlike any other, as it has only two buttons instead of the usual numeric keypad. The way it works is as simple as its keypad. Button S1 is used to enter the digits of the secret code in a pulsed fashion-i.e. the number of times you press the but-ton is determined by the digit to be entered. A dial telephone uses the same type of coding (now maybe there’s an idea?). Press four times for a 4, nine times for a 9, etc. Pressing button S2 indicates the end of a digit.
Two-button Digital Lock Project Image:
For example, to enter the code 4105, press S1 four times, then press S2, then S1 once, S2 once, then without pressing S1 at all, press S2 again, then finally S1 five times and S2 once to finish. If the code is correct, the green LED D1 lights for 2 seconds and the relay is energised for 2 seconds. If the code is wrong, the red LED D2 lights for 2 seconds, and the relay is not energised. To change the code, fit a jumper to J1 and enter the current code. When the green LED D1 has flashed twice, enter the new 4-digit code. D1 will flash three times and you will need to confirm the new code. If this confirmation is correct, D1 will flash four times. If the red LED D2 flashes four times, some-thing’s wrong and you’ll need to start all over again. To finish the operation, remove the jumper and turn the power off and on again the digital lock is now ready for use with the new code.
Two-button Digital Lock Circuit diagram :
The software can be found on the webpage for the project [1]. Don’t forget to erase the microcontroller’s EEPROM memory before programming it, so you can be sure that the default code is 1234 and not some -thing unknown that was left behind in the EEPROM. A little exercise for our readers: convert this project into a single-button digital lock for example, by using a long press on S1 instead of pressing S2 to detect the end of a digit.
Author : Francis Perrenoud - Copyright : Elektor
How To Make a Two Line Intercom Cum Telephone Line Changeover
The circuit presented here can be used for connecting two telephones in parallel and also as a 2-line intercom. Usually a single telephone is connected to a telephone line. If another telephone is required at some distance, a parallel line is taken for connecting the other telephone. In this simple parallel line operation, the main problem is loss of privacy besides interference from the other phone. This problem is obviated in the circuit presented here. Under normal condition, two telephones (telephone 1 and 2) can be used as intercom while telephone 3 is connected to the lines from exchange. In changeover mode, exchange line is disconnected from telephone 3 and gets connected to telephone 2.
2-Line Intercom-Cum-Telephone Line Changeover Circuit Diagram
For operation in intercom mode, one has to just lift the handset of phone 1 and then press switch S1. As a result, buzzer PZ2 sounds. Simultaneously, the side tone is heard in the speaker of handset of phone 1. The person at phone 2 could then lift the handset and start conversation. Similar procedure is to be followed for initiation of the conversation from phone 2 using switch S2. In this mode of operation, a 3-pole, 2-way slide-switch S3 is to be used as shown in the figure. In the changeover mode of operation, switch S3 is used to changeover the telephone line for use by telephone 2. The switch is normally in the intercom mode and telephone 3 is connected to the exchange line.
Before changing over the exchange line to telephone 2, the person at telephone 1 may inform the person at telephone 2 (in the intercom mode) that he is going to changeover the line for use by him (the person at telephone 2). As soon as changeover switch S3 is flipped to the other position, 12V supply is cut off and telephones 1 and 3 do not get any voltage or ring via the ring-tone-sensing unit. Once switch S3 is flipped over for use of exchange line by the person at telephone 2, and the same (switch S3) is not flipped back to normal position after a telephone call is over, the next telephone call via exchange lines will go to telephone 2 only and the ringtone-sensing circuit will still work. This enables the person at phone 3 to know that a call has gone through. If the handset of telephone 3 is lifted, it is found to be dead. To make telephone 3 again active, switch S3 should be changed over to its normal position.
Thursday, September 18, 2014
Two Cell LED Torch
It sometimes comes as a bit of a shock the first time you need to replace the batteries in an LED torch and find that they are not the usual supermarket grade alkaline batteries but in fact expensive Lithium cells. The torch may have been a give away at an advertising promo but now you discover that the cost of a replacement battery is more than the torch is worth. Before you consign the torch to the waste bin take a look at this circuit. It uses a classic two-transistor astable multivibrator configuration to drive the LEDs via a transformer from two standard 1.5 V alkaline batteries.
The operating principle of the multivibrator has been well documented and with the components specified here it produces a square wave output with a frequency of around 800 Hz. This signal is used to drive a small transformer with its output across two LEDs connected in series. Conrad Electronics supplied the transformer used in the original circuit. The windings have a 1:5 ratio. The complete specification is available on the (German) company website at www.conrad.de part no. 516236. It isn’t essential to use the same transformer so any similar model with the same specification will be acceptable.

The LEDs are driven by an alternating voltage and they will only conduct in the half of the waveform when they are forward biased. Try reversing both LEDs to see if they light more brightly. Make sure that the transformer is fitted correctly; use an ohmmeter to check the resistance of the primary and secondary windings if you are unsure which is which. The load impedance for the left hand transistor is formed by L in series with the 1N4002 diode. The inductance of L isn’t critical and can be reduced to 3.3 mH if necessary. The impedance of the transformer secondary winding ensures that a resistor is not required in series with the LEDs.
Unlike filament type light sources, white LEDs are manufactured with a built-in reflector that directs the light forward so an additional external reflector or lens glass is not required. The LEDs can be mounted so that both beams point at the same spot or they can be angled to give a wider area of illumination depending on your needs. Current consumption of the circuit is approximately 50 mA and the design is even capable of producing a useful light output when the battery voltage has fallen to 1 V. The circuit can be powered either by two AAA or AA size alkaline cells connected in series or alternatively with two rechargeable NiMH cells.
Read More..
The operating principle of the multivibrator has been well documented and with the components specified here it produces a square wave output with a frequency of around 800 Hz. This signal is used to drive a small transformer with its output across two LEDs connected in series. Conrad Electronics supplied the transformer used in the original circuit. The windings have a 1:5 ratio. The complete specification is available on the (German) company website at www.conrad.de part no. 516236. It isn’t essential to use the same transformer so any similar model with the same specification will be acceptable.

The LEDs are driven by an alternating voltage and they will only conduct in the half of the waveform when they are forward biased. Try reversing both LEDs to see if they light more brightly. Make sure that the transformer is fitted correctly; use an ohmmeter to check the resistance of the primary and secondary windings if you are unsure which is which. The load impedance for the left hand transistor is formed by L in series with the 1N4002 diode. The inductance of L isn’t critical and can be reduced to 3.3 mH if necessary. The impedance of the transformer secondary winding ensures that a resistor is not required in series with the LEDs.
Unlike filament type light sources, white LEDs are manufactured with a built-in reflector that directs the light forward so an additional external reflector or lens glass is not required. The LEDs can be mounted so that both beams point at the same spot or they can be angled to give a wider area of illumination depending on your needs. Current consumption of the circuit is approximately 50 mA and the design is even capable of producing a useful light output when the battery voltage has fallen to 1 V. The circuit can be powered either by two AAA or AA size alkaline cells connected in series or alternatively with two rechargeable NiMH cells.
Subscribe to:
Posts (Atom)